
Chapter 19 

Credit Risk or Default Risk  

19.1. Introduction 

As mentioned by Basel I and Basel II Committees, the credit risk problem is one 
of the most important contemporary problems for banks and insurance companies. 
Financial studies have been developed both from theoretical and practical points of 
views. They consist of calculating the default probability of a firm. 

 
There is a very wide range of research on credit risk models (see, for example, 

Bluhm et al. (2002), Crouhy et al. (2000), Lando (2004), etc.). 
 
In the 1990s, Markov models were introduced to study credit risk problems. 

Many important papers on these kinds of models were published (see Jarrow and 
Turnbull (1995), Jarrow et al. (1997), Nickell et al. (2000), Israel et al. (2001), and 
Hu et al. (2002)), mainly for solving the problem of the evaluation of the transition 
matrices. In Lando and Skodeberg (2002) some problems regarding the duration of 
the transition are expressed, but never, as far as the authors know, a model in which 
the randomness of time in the states transitions has been constructed. 

 
Semi-Markov models were introduced by Janssen, Manca and D’Amico (2005a) 

and Janssen and Manca (2007) firstly in the homogenous case. The non-
homogenous case was developed in Janssen, Manca and D’Amico (2004a) and 
Janssen and Manca (2007). With these new models, it is possible to generalize the 
Markov models introducing the randomness of time for transitions between the 
states. 
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19.2. The Merton model 

19.2.1. Evaluation model of a risky debt 

The Merton (1974) model or the firm model considers the case of a firm that 
borrows an amount M of money at time 0, for example in the form of a zero coupon 
bond with facial value F (interests included) representing the amount to reimburse at 
time T. 

 
As the borrower has the risk that the firm will be in default at time T, the debt is 

called a risky debt of value D(0) at time 0. This value of the risky debt must use a 
stochastic model, called here the Merton model. 

 
After the loan, we have: 

V(0)=A+M,  (19.1) 

V(0) representing the value of the firm at time 0. 
 
At the maturity of debt T, two situations are possible following this value V(0) 

with respect to F. They are given by the next table. 
 

At time T V(T)<F V(T)>F 

Borrowers V(T) F 

Shareholders 0 V(T)-F 

Table 19.1. Situation at maturity time 

Using the concept of plain vanilla options, it is clear that the values of A(T) and 
D(T) representing respectively the equities of the shareholders and the value of the 
risky debt are given by: 

( ) max 0, ( ) ,

( ) min ( ), ( max 0, ( ) ).

A T V T F

D T V T F F F V T
 (19.2) 
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Thus, at t=0, with the Black and Scholes approach for the evaluation of options, 
under the risk neutral measure Q and with F as exercise price, we obtain 

(0) [max 0, ( ) ] (value of the call),

(0) [max 0, ( ) ] (  put),

rT
Q

rT rT rT
Q

A e E V T F

D Fe e E F V T e F
 (19.3) 

r being, as usual, the instantaneous non-risky interest rate. 
 

From this last relation, we obtain: 

(0) [max 0, ( ) ],rT rT
QFe D e E F V T  (19.4) 

which shows that the difference between the non-risky debt and the risky debt is 
simply the value of the put in the hands of the shareholders taking account of the 
possibility of default. 
 

Let us recall that Merton uses the traditional Black and Scholes model given in 
Chapter 14. 

 
So, on the complete filtered space , , ( ),t Q , the process value of the firm 

( ), 0,V V t t T
 
satisfies: 

0

( ) ( ) ( ),

(0) ,

dV V t rdt V t dW t

V V
  (19.5) 

and we know that: 

( )
2 1

2

1

2 1

( , ) ( ) ( ),

1
log ( )( ) ,

2

,

( ).

r T tP S t Ke d S d

S
d r T t

KT t

d d T t

S S t

 (19.6)

 

We have: 

, (0), 0,K F S V t  
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and thus: 

2 1

2

1

2 1

( (0), ) [ ( ) (0) ( )],

1 (0)
log ( ) ,

2

.

rT

rT

P V T Fe d V d

V
d r T

T Fe

d d T

 (19.7) 

From relation (19.4), the value of the risky debt is given by:  

2 1(0) [ ( ) (0) ( )],rT rTD Fe Fe d V d  

where (19.8) 

2

1

2 1

1 (0)
log ( ) ,

2

.

rT

V
d r T

T Fe

d d T

 

19.2.2. Interpretation of Merton’s result 

From relation (19.8), we can write D(0) in the following form: 

1
2

2

2

1

2 1

( )
(0) ( )[ (0) ],

( )

1 (0)
log ( ) ,

2

.

rT rT

rT

d
D Fe d Fe V

d

V
d r T

FeT

d d T

 (19.9) 

The first term is nothing other than the present value at time 0 of the non-risky 
debt of amount F; the second term is the product of the default probability at time 
T, ( ( ) )P V T F  and the present value of the expected loss amount 

1

2

( )
(0)

( )
rT d

Fe V
d

. 

Let us show for example that 2( )d  is the default probability ( ( ( ) )P V T F . 
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Indeed, from the lognormality property of V(T)/V(0), we successively obtain: 

0 0

0 0

2 2

0 0

2

0

( )
( ( ) )

( )
ln ln ,

( )
ln ln

2 2
,

ln
2

.

V T F
P V T F P

V V

V T F
P

V V

V T F
r T r T

V V
P

t t

F
r T

V

t

 (19.10) 

From the Black and Scholes result, we have: 

2
0

1

2
0

2 1

ln
2

ln ( )
2

( ),

 .

V
r T

K
d

T

V
r T

K
d d T

T
K F

 (19.11) 

So, we obtain the desired result. 

19.2.3. Spreads 

The value of the risky debt D(0) may be seen as the present value of F using a 
rate 'r  defined by: 

'(0) ,r TD e F   (19.12) 
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so that 

'(0) ,

1
' ln .

(0)

r TD e F

F
r

T D

  (19.13) 

The corresponding spread is thus given by: 

' .spread r r   (19.14) 

To compute the interest rate corresponding to the corresponding non-risky debt, 
we define the rate ''r  such that: 

''r TM e F   (19.15) 

and so: 

1
'' ln .

F
r

T M
  (19.16) 

This gives another spread as the difference of risky and non-risky rates called 
actuarial spread: 

actuarial spread '' .r r   (19.17) 

Example 19.1 (Farber et al., (2004)) A firm has an initial capital of €2,500,000 and 
for future investments it is necessary to receive a loan of €2,000,000 to be 
reimbursed in two years. 

 
The firm finds a bank agreeing this loan in the form of a zero coupon bond with 

facial value €3,000,000, interests included and of course of maturity 2 years. 
 
This gives a rate ''r  of 22.5%! 
 
The next table gives the result related to the value of the risky debt. 
 



Credit Risk or Default Risk     749 

Data of the firm  

   

Initial capital A(0) 2,500,000 

Facial value F(T) 3,000,000 

Volatility  0.6931 

Maturity T 2 

Amount M  2,000,000 

Firm value at t=0:V(0) 4,500,000 

Non-risky rate  

Annual  0.02 

Instantaneous 0.01980263 

   

Results  

Present value of F 2,883,506.34 

d(1) 0.94416045  

d(2) –0.03603097  

phi(-d(1)) 0.172543815  

phi(-d(2)) 0.514371227  

   

Default probability 0.51437123 

Current value of recovering 1373998.96 

Value of the risky debt: D(0) 2176760.82 

   

Conclusions   

   

Instantaneous rate of the loan 0.20273255 

Annual rate of the loan ''r  0.22474487 

   

Instantaneous rate of risky debt 0.16038719 

Annual rate of risky debt 'r  0.17396533 

Spread 0.06435768 

   

Spread with the non-risky rate  

With ''r  0.20474487 

With 'r  0.15396533 

  

Actuarial spread 0.06435768 

Table 19.2. Merton model 
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19.3. The Longstaff and Schwartz model (1995) 

To improve the Merton model, Longstaff and Schwartz (1995) have introduced a 
threshold K such that the firm is in default if its value is below K. 

 
To compute the default risk PDF(T) before time T, from the Merton model: 

dV Vdt VdW t

V V

( ),

( ) ,0 0  

 (19.14) 

we know that 

2

0

( )
ln ( ).

2

V t
t W t

V
  (19.15) 

It follows that: 

PDF T P V T K( ) ( ( ) ),   (19.16) 

and so: 

0 0

( )
( ) ln ln .

V t K
PDF T P

V V
  (19.17) 

As from relation (19.15), we obtain: 

2
2

0

( )
ln ,

2

V t
N t t

V
  (19.18) 

And we obtain from relation (19.17): 

2

0

ln
2

( ) .

K
T

V
PDF T

T
 (19.19) 

This is the result of Longstaff and Schwartz (1995) in their model called the 
KMV Credit Monitor. 
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It must be clear that this model gives the possibility to be in default at time t and 
no more in default at time s, s>t. 

 
If we introduce, as in Janssen (1993), the concept of lifetime of the firm as the 

stopping time  defined as: 

inf : ( )t V t K   (19.20) 

or as: 

inf :ln
( )

lnt
V t

V

K

V0 0
.  (19.21) 

With result (19.15), we have: 

inf :( ) ( ) ln .t t W t
K

V

2

02
 (19.22) 

It follows that: 

inf :ln ( ) ( ) .t
V

K
t W t0

2

2
0  (19.23) 

Finally, with: 

2
0ln , ' ,

2

V
u t

K
  (19.24) 

we can write: 

P t u t( , ) ,  (19.25) 

Using the fundamental results of Cox and Miller (1965) on diffusion processes, 
we finally obtain: 

( , )
' '

'

u t
u t

t
e

u t

t

u

1

2
2

. (19.26) 
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This probability is called the ruin probability before t in the actuarial risk theory, 
and so the non-ruin probability before t is given by:  

( , ) 1 ( , ).u t u t   (19.27) 

For t , we obtain:  

( ) lim ( , )
, ' ,

, '

'u u t
et

u

1 0

0
2

2
 (19.28) 

and so: 

( ) lim ( , )
, ' ,

, ' .

'u u t
et

u

0 0

1 0
2

2
 (19.29) 

Remark 19.1 It is clear that the default probability of Longstaff and Schwartz is 
always smaller than the ruin probability computed by the Janssen model.  

19.4. Construction of a rating with Merton’s model for the firm 

19.4.1. Rating construction 

In this section, we will develop an elaboration of a rating model using the 
traditional Merton model for the firm (1974), which is used in Creditmetrics 
initialized by J.P. Morgan as a sequel of the Riskmetrics computer program 
dedicated to the VaR methods (see Janssen and Manca (2007)). 

 
In the Merton model (1974), value V of the firm is modeled with a Black and 

Scholes stochastic differential equation with trend  and instantaneous volatility  
(see Chapter 14) 

0

( ) ( ) ( ),

(0) ,

dV V t dt V t dW t

V V
  (19.30) 

so that its value time at t is given by 

2

( ) ( )
2

0( )
t W t

V t V e   (19.31) 
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0V  being the value of the firm at time 0 and ( ), 0,W W t t T  a standard 
Brownian motion defined on the filtered probability space , ,( ), .t P  
 

If defV  is the threshold beyond which the firm defaults, called the threshold 
default, the probability defP  that the company defaults before time t is given by: 

2

0

2

0

, ( )

                 ( ) ln
2

1
                 ( ) ln .

2

def def def

def

def

P V t P V t V

V
P t W t

V

V
P W t t

V

 (19.32) 

As, for all positive t, ( ) /W t t  has a normal distribution, we obtain: 

2

0

1
, ln

2
def

def def

V
P V t t

Vt
. (19.33) 

So, if we fix value defV , we can compute the corresponding value of defP  using 
the quartiles of the normal distribution. 

 
Of course, the inverse is possible: first fix defP  and then compute the 

corresponding level defV . 
 
In the following, let us suppose that we fix the default probability defV  so that 

we compute the corresponding quantile CCCZ  given by 

2

0

, ,

1
ln .

2

def def CCC

def
CCC

P V t Z

V
Z t

Vt

 (19.34) 

This means that if Z is below or equal to CCCZ , with Z defined by: 

2

0

1
ln

2

V
Z t

Vt
,  (19.35) 

the considered firm is supposed to be in default and theoretically has to stop all 
activities. 
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On the contrary, if the value of Z is larger than CCCZ , corresponding to the 
threshold value CCCV , but before the quartile BZ , corresponding to the threshold 
value BV , the rating given to the firm is noted CCC, etc. So, with a fixed scale of 
firm threshold values: 

def CCC B BB BBB A AA AAAV V V V V V V V  (19.36) 

we obtain a scale of increasing thresholds quartiles represented by: 

CCC B BB BBB A AA AAAZ Z Z Z Z Z Z , (19.37) 

assigning a credit rating or grade to firms as an estimate of their creditworthiness.  
 
If Z represents the observed value of Z for the considered firm, the scale used 

here is the rating used by the famous credit rating agencies Standard and Poor’s, and 
Moody’s given below. 

 
Zobs value notation 

  

Zobs<ZCCC default 

ZCCC<Zobs<ZB CCC 

ZB<Zobs<ZBB B 

ZBB<Zobs<ZBBB BB 

ZBBB<Zobs<ZA BBB 

ZA<Zobs<ZAA A 

ZAA<Zobs<ZAAA AA 

ZAAA<Zobs AAA 

Table 19.3. Rating agencies 

It is clear that the credit ratings depend on time t and also on the selection of the 
probabilities 

defP ( ), ( ), ( ), ( ), ( ), ( ), ( )CCC B BB BBB A AA AAAP Z P Z P Z P Z P Z P Z P Z  (19.38) 

or on the threshold scale of firm values 

CCC B BB BBB A AA AAAZ Z Z Z Z Z Z  (19.39) 

chosen by the credit rating agency.  
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We can also compute the following relations: 

( ),

( ),

( ),

( ),

( ),

( ),

( ),

( ),

déf obs CCC

CCC CCC obs B

B B obs BB

BB BB obs BBB

BBB BBB obs A

A A obs AA

AA AA obs AAA

AAA AAA obs

P P Z Z

P P Z Z Z

P P Z Z Z

P P Z Z Z

P P Z Z Z

P P Z Z Z

P P Z Z Z

P P Z Z

  (19.40) 

and so: 

,

1.

B def CCC

def CCC B AA AAA

P P P

P P P P P
 (19.41) 

Using relation (19.35), we obtain: 

 

2

0
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0
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1
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1
ln ,
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ln ,

2

...

1
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2
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def CCC

BB
def CCC B
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Vt
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Vt

V
P P P t
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 (19.42) 
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and moreover: 
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 (19.43) 

All these relations show how the grades are time dependent, which is why we 
will now study the dynamics of ratings. 

19.4.2. Time dynamic evolution of a rating  

19.4.2.1. Continuous time model  

In continuous time, the rating process is nothing other than the stochastic process 
defined by relation (19.33), 

Z Z t Tt ,0   (19.44) 

where r.v. Zt represents the credit rating at time t given by: 

( , ) ( ),def t tP V t Z  

or  (19.45) 

2

0

1
ln .

2
t

t

V
Z t

Vt
 

Here, grade Zt represents exactly the value inside one of the classes defined 
above and no longer only the class. 
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Substituting the value of tV  from relation (19.30) in (19.45), we obtain: 

( )
, 0,t

W t
Z t

t
  (19.46) 

so that 

 
( ) ( )

, 0, , .t t t CCC

W t t W t
P Z j Z P j i t i j Z

t t t
(19.47) 

As the standard Brownian process has stationary and independent increments 
(see Definition 10.27), we also obtain: 

( ) ( )

( )
( ) ( ) ( ) ,

W t t W t
P j i

t t t

W t
P W t t W t j t t W t i

t

 (19.48) 

or using relation (19.47): 

( ) ( )
( )

                         ,

t t t t

W t t W t j t t i t
P Z j Z P Z i

t t

j t t i t

t

 (19.49) 

the last equality coming from the normality of the increments of a standard 
Brownian motion. 
 

We can also write this last result in the form: 

P Z j Z i
j s i t

s t
s t( ) .  (19.50) 

The corresponding density function is given by: 

d

dj
P Z j Z i

s

s t

j s i t

s t
s t( ) ' .  (19.51) 



758     Mathematical Finance  

This last result is correct only for CCCi Z . On the other hand, for CCCi Z , the 
default state being considered as an absorbing state, we have necessarily for j i : 

( ) 1.s tP Z j Z i   (19.52) 

In conclusion, as the transition probability given by (4.21) depends on both s and 
t and not only on t – s, we proved that the Z process is a non-homogenous Markov 
process, introduced in Chapter 3. 

19.4.2.2. Discrete time model  

Let us define 1,...,m  as the set of the m credit ratings ranked in increasing 
order with Moody’s scale: 1= defD  (default), 2=ZCCC,..., m=ZAAA. 

 
Except for the extreme classes, the rating classes defined below will now be 

represented by their centers as follows: 

- ,1   :         1

3
1,2   :           

2
....

2 -1
1,   :     

2
...

2 -1
1,   : 

2
,       :      

i
i i

m
m m

m m

  (19.53) 

Let Z it , i being a class center different from 1; from result (19.50), we have: 

( 1 )

( 1)
, .

s tP j Z j Z i

j s i t j s i t
s t

s t s t

 (19.54) 

To obtain a discrete-time, let us suppose that we give notations at times 
0,u,2u,…,ku representing for example one year or a semester. Now transition 
probabilities become: 

1( 1 )

1 ( 1) 1
, 0,1,.....

ku kuP j Z j Z i

j ku i ku j ku i ku
k

u u

 (19.55) 
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Of course, if Zku equals DefZ , we know from relation (19.52) that 

1

0, 1,
( 1 )

1, 1.ku ku D

j
P j Z j Z Z

j
 (19.56) 

Relations (19.54) and (19.55) define a sequence of probability transition matrices 
P(k), k=0,1,... with: 

( ) ( )ijk p kP   (19.57) 

and 

1( ) ( 1 ), , 1,..., , 0,1,...ij ku kup k P j Z j Z i i j m k  (19.58) 

It follows that the credit rating process Z in discrete-time Z=(Zku,k=0,1,...) is 
what we call a non-homogenous Markov chain defined in Chapter 12. 

 
Of course, in the very particular and unrealistic case where the probability 

transition matrices P(k), k=0,1,... are independent of t, the process in discrete-time 
Z=(Zku,k=0,1,...,) is then a homogenous Markov chain as defined in Chapter 11. 

19.4.2.3. Example 

In real-life economics, credit rating agencies play a crucial role; they compile 
data on individual companies or countries to estimate their probability of default, 
represented by their scale of credit ratings at a given time and also by the probability 
of transitions for successive credit ratings.  

 
A change in the rating is called a migration. Migration to a higher rating will of 

course increase the value of a company’s bond and decrease its yield, giving what 
we call a negative spread, as it has a lower probability of default, and the inverse is 
true with a migration towards a lower grade with consequently a positive spread. 

 
Here we have an example of a possible transition matrix for migration from one 

year to the next one. 
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 AAA AA A BBB BB B CCC D Total 
AAA 0.90829 0.08272 0.00736 0.00065 0.00066 0.00014 0.00006 0.00012 1 
AA 0.00665 0.9089 0.07692 0.00583 0.00064 0.00066 0.00029 0.00011 1 
A 0.00092 0.0242 0.91305 0.05228 0.00678 0.00227 0.00009 0.00041 1 

BBB 0.00042 0.0032 0.05878 0.87459 0.04964 0.01078 0.0011 0.00149 1 
BB 0.00039 0.00126 0.00644 0.0771 0.81159 0.08397 0.0097 0.00955 1 
B 0.00044 0.00211 0.00361 0.00718 0.07961 0.80767 0.04992 0.04946 1 

CCC 0.00127 0.00122 0.00423 0.01195 0.0269 0.11711 0.64479 0.19253 1 
D 0 0 0 0 0 0 0 1 1 

Table 19.4. Example of transition matrix of credit ratings 

We clearly see that the probabilities of no migration, given by the elements of 
the principal diagonal, are the highest elements of the matrix but that they decrease 
with the poor quality of the rating. 

 
Here, we see for example that a company with rank AA has more or less nine 

chances out of 10 to keep its rating next year but it will move to rank AAA with 
only six chances in 1,000. 

 
On the other hand, a company with a CCC as a rating will be in default next year 

with 20 chances out of 100. 
 
As a more concrete example, the next table gives the transition probability 

matrix of Standard and Poor’s credit ratings for 1998 (see ratings performance, 
Standard and Poor’s) for a sample of 4,014 companies. 

 
Let us point out the presence of a “new” state called NR (rating withdrawn) 

meaning that for a company in such a state, the rating has been withdrawn and that 
this event does not necessary lead to default the following year, thus explaining the 
last row of the above matrix. 

 
Effec.  AAA AA A BBB BB B CCC D NR Total 
165 AAA 90 6 0 0.61 0 0 0 0 3.03 100 
560 AA 0.18 89.8 5.61 0.18 0 0 0 0 4.23 100 

1,095 A 0.09 1.5 87.18 5.11 0.18 0 0 0 5.94 100 
896 BBB 0 0 2.79 84.93 4.46 0.67 0.22 0.34 6.59 100 
619 BB 0.32 0.2 0.16 5.33 75.4 5.98 2.75 0.65 9.21 100 
649 B 0 0 0.15 0.62 6.16 76.27 5.09 4.47 7.24 100 
30 CCC 0 0 3.33 0 0 20 33.31 36.69 6.67 100 
 NR 0 0 0 0 0 0 0 0 100 100 

4,014            

Table 19.5. Example with rating withdrawn 
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Here, we see for example that companies in state AA will not be in default the 
next year but that 5.61% of them will degrade to A and 0.18% to a BBB and 0.18% 
will upgrade to an AAA. 

 
Under the assumption of a homogenous Markov chain, we obtain the following 

results: 

(i) the probability that an AA company defaults after two years 

P(2)(D/AA)=0.0018 0.0034=0.0006%, 

which is still very low; 

(ii) the probability that a BBB company defaults in one of the next two years 

This probability is given by: 

( / ;2) ( / ) ( / ) ( / )

( / ) ( / ) ( / ) ( / ) ( / ) ( / )

                      0.34%+(84.93% 0.34%) +(4.46% 0.65%)+(0.67% 4.47%)+(0.22% 36.67%)

                       =

P D BBB P D BBB P BBB BBB P D BBB

P BB BBB P D BB P B BBB P D B P CCC BBB P D CCC

0.77%;

 

(iii) the probability for a company BBB to default between year 1 and year 2 

Using the standard definition of conditional probability (see Chapter 1) we 
obtain  

P(D at 2/non-def. at 1) = P(D at 2 and non-def. at 1)/ P(non-def. at 1) 
 =(0.77%-0.34%)/(1-0.34%) 
 =0.43%. 

Let us point out that these illustrative results are true under the homogenous 
Markov chain model and moreover give similar results for all the companies of the 
panel in the same credit rating. 

 
In fact, in real life applications, credit rating agencies also study each company 

on its own account so that specific information is also determined for giving the 
final grade. 

19.4.2.4. Ratings and spreads on zero bonds  

Let us first recall that a zero coupon bond is a contract paying a known fixed 
amount called the principal, at some given future date, called the maturity date. 

 



762     Mathematical Finance  

So, if the principal is one monetary unit and T the maturity date, the value of this 
zero coupon at time 0 is given by: 

(0, ) TB T e   (19.59) 

if  is the considered constant instantaneous intensity of interest rate. 
 

Of course, the investor in zero coupons must take into account the risk of default 
of the issuer. To do so, we consider that, in a risk neutral framework, the investor 
has no preference between the following two investments: 

(i) to receive almost surely at time 1 the amount e  as counterpart of the 
investment at time 0 of one monetary unit; 

(ii) to receive at time 1 the amount ( ) ( 0)se s  with probability (1 – p) or 0 
with probability p, as counterpart of the investment at time 0 of one monetary unit, p 
being the default probability of the issuer. 

 
The positive quantity s is called the spread with respect to the non-risky 

instantaneous interest rate  as counterpart of this risky investment in zero coupon 
bonds. 

 
From the indifference given above, we obtain the following relation: 

( )(1 ) se p e   (19.60) 

or  

1 (1 ) ,sp e   (19.61) 

s pln( ).1   (19.62) 
s p

s p p

,

.
1

2
2   (19.63) 

Let us now consider a more positive and realistic situation in which the investor 
can obtain an amount ,(0 1)  if the issuer defaults at maturity or before. 

 
In this case, the expectation equivalence principle relation (19.60) becomes: 

(1 ) ,se p e p e   (19.64) 

or 

1 (1 ) .sp e p   (19.65) 
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It follows that in this case the value of the spread satisfies the equation 

1

1
s p

e
p

  (19.66) 

and so the spread value is 

1
ln .

1

p
s

p
  (19.67) 

As above, using the MacLaurin formula respectively of order 1 and 2, we obtain 
the two following approximations for the spread: 

2

(1 ),
1

1
(1 ) (1 ) .

1 2 1

p
s

p

p p
s

p p

 (19.68) 

19.5. Discrete time semi-Markov processes 

19.5.1. Purpose 

In this section, we will present both discrete-time homogenous (DTHSMP) and 
non-homogenous (DTNHSMP) semi-Markov processes and how to apply semi-
Markov models to the credit risk environment. 

 
Although, in general, time in real-life problems is continuous, the real 

observation of the considered system is almost always made up of discrete-time 
even if the used time unit may in some cases be very small. 

 
The choice of this time unit depends on what we observe and what we wish to 

study. 
 
For example, if we are studying the random evolution of the earthquake activity 

in a tectonic fracture zone, then it could be observed with a unitary time scale of ten 
years. If we are studying the behavior of a disablement resulting from a job related 
illness, the unitary time could be one year, etc. 

 
Thus, it results that while the phenomenon of time evolution is continuous, 

usually, the observations are discrete in time.  
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Consequently, if we construct a model to be fitted with real data, in our opinion, 
it would be better to begin with discrete-time models. 

 
The rating changes can be followed by a Markov chain model. 
 
In some papers, the problem of the unfitting of Markov process in the credit risk 

environment was outlined (see Altman (1998), Nickell et al. (2000), Kavvathas 
(2001), Lando and Skodeberg (2002)). 

 
The principal problems of non-Markovianity that are highlighted are as follows: 

(i) the duration inside a state. The probability of changing rating depends on the 
time that a firm remains at the same rating; 

(ii) the dependence on time of the rating evaluation (ageing phenomenon). This 
means that, in general, the rating evaluation depends on the time at which it is done 
and, more importantly, on the business cycle. The rating evaluation done at time t is 
generally different from the one done at time s, if s t ; 

(iii) the dependence of the new rating on the previous ones, not only the last 
rating, but also the one before last. 

 
As the first approach, the first problem can be solved by means of semi-Markov 

processes (SMP). In fact, in SMP the transition probabilities are a function of the 
waiting time spent in a state of the system. Furthermore, in a semi-Markov 
backward recurrence time conditioning the problem is resolved successfully. 

 
As a general approach, the second problem can be faced by means of a non-

homogenous environment and, using a more particular approach, by means of 
different scenarios in the model. 

 
The third effect exists in the case of downward moving ratings but not in the case 

of upward moving ratings; see Kavvathas (2001). More precisely, if a firm obtains a 
lower rating, then there is a higher probability that the next rating will be lower than 
the preceding one. In the case of an upward movement, this phenomenon does not 
hold. 

 
The credit risk semi-Markov approach was developed in D’Amico et al. (2005a), 

D’Amico et al. (2004a), D’Amico et al. (2004b) and D’Amico et al. (2005b). In the 
last sections of this chapter we will present the models and their theoretical 
background. 

 
It should be mentioned that Koopman et al. (2005) and Vasileiou and Vassiliou 

(2006), in other environments, show how semi-Markov processes are more suitable 
than the Markov ones in the credit risk transition models. 
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19.5.2. DTSMP definition 

Though DTHSMP and DTNHSMP definitions are similar to the continuous ones 
given in Chapter 3, we will give these definitions for discrete-time using directly the 
terminology used for continuous time models. 

 
Let I={1, 2, …, m} be the state space and let , , P  be a probability space. 

Let us also define the following r.vs.:  

:nJ I ,       :nT .  (19.69) 

Definition 19.1 The process ( ,  )n nJ T  is a discrete-time homogenous Markov 
renewal process or a discrete-time non-homogenous Markov renewal process if the 
kernels Q associated with the process are defined respectively in the following way: 

1 1( ) ,  - | , ,ij n n n nQ t P J j T T t J i i j I tQ , (19.70) 

1 1( , ) ,  | , , , ,ij n n n nQ s t P J j T t J i T s i j I s tQ  (19.71) 

As in the continuous time case, it results that for the homogenous case, we define: 

lim ( ) ; , ,ij ijt
p Q t i j I tP . (19.72) 

For the non-homogenous case, we obtain: 

( ) lim ( , ) ; , , ,ij ijt
p s Q s t i j I s tP , (19.73) 

P being the transition matrix of the embedded Markov chain of the process. 
 

Furthermore it is necessary to introduce the probability that the process will 
leave state i before or at time t: 

1( ) - | ,i n n nH t P T T t J iH  (19.74) 

1( , )  | , .i n n nH s t P T t J i T sH  (19.75) 

From the results of Chapter 12, we know that: 

1 1

( ) ( ) and  ( , ) ( , )
m m

i ij i ij
j j

H t Q t H s t Q s t . (19.76) 
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Probability (19.77) only has sense in the discrete-time case and to be concise, we 
present first the definition for the homogenous case and then for the non-
homogenous case. 

 
Definition 19.2 Matrix B is defined as follows: 

1 1( ) ,  - | ,ij n n n nb t P J j T T t J iB  (19.77) 

1 1( , ) ,  | , .ij n n n nb s t P J j T t J i T sB  (19.78) 

From Definition 19.1 it results that: 

(0) 0 if 0,

1 if 1,2,...,
ij

ij

Q t
b (t) Q (t) Q (t ) tij ij

 (19.79) 

( , ) 0 if ,
( , ) ( , ) ( , 1) if .

ij

ij

Q s s t s
b s t Q s t Q s t t sij ij

 (19.80) 

Definition 19.3 The discrete-time conditional distribution functions of the waiting 
times given the present and the next states, are given by: 

1 1( ) - | , ,ij n n n nF t P T T t J i J jF  (19.81) 

1 1( , ) | , , .ij n n n nF s t P T t J i J j T sF  (19.82) 

Obviously, the related probabilities can be obtained by means of the following 
formulae: 

1

( ) if 0,
( )  

( )        if 0,
ij ij ij

ij

Q t  /  p p
F tij U t p

 (19.83) 

1

( , ) ( ) if ( ) 0,
( , )  

( , )             if ( ) 0,
ij ij ij

ij

Q s t  /  p s p s
F s tij U s t p s

 (19.84) 

where 1 1( ) ( , ) 1 ,U t U s t s t . 
 

Now, we can introduce the discrete-time semi-Markov process 
( ),Z Z t t  where ( )( ) , ( ) max :N t nZ t J N t n T t  represents the 

state occupied by the process at time t.  
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For i,j=1,…,m, the transition probabilities are defined in the following way: 

0( ) Pij t t   Z   j | Z   i   (19.85) 

for the homogenous case; for the non-homogenous case, we have: 

( , ) P , ( ) ( ) 1 .ij t s s t   Z   j | Z   i N s N s  (19.86) 

They are obtained by solving the following evolution equations: 

1 1

( ) (1 ( )) ( ) ( ),
m t

ij ij i i jt H t b t  (19.87) 

1 1

( , ) (1 ( , )) ( , ) ( , ),
m t

ij ij i i j
s

s t H s t b s t  (19.88) 

where, as usual, ij represents the Kronecker symbol. 
 

The first part of relations (19.87) and (19.88) 

(1 ( ))ij iH t   (19.89) 

(1 ( , ))ij iH s t   (19.90) 

give the probability that the system does not have transitions up to time t given that 
it was in state i at time 0 in the homogenous case and at time s in the non-
homogenous case. Relations (19.89) and (19.90) in the rating migration case 
represent the probability that the rating organization does not give any new rating 
evaluation in a time t in homogenous case and from the time s up to the time t in 
non-homogenous case. This part has sense if and only if i=j and this is the reason of 
Kronecker . 
 

In the second parts 

1 1

( ) ( )
m t

i jb t  

1 1

( , ) ( , )
m t

i j
s

b s t   (19.91) 

( )ib  and ( , )ib s
 
represent the probability that the system was at time s in the 

state I, remained in this state up to time  and that it went to the state  just at 
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time . After the transition, the system will go to state j following one of the 
possible trajectories that go from state  at time  to state j within time t . In the 
credit risk environment, this means that in a time t, in the homogenous case, and 
from time s up to time , in the non-homogenous, the rating company does not 
offer any other evaluation of the firm; at time  the rating company gave the new 
rating  for the evaluation firm. After this, the rating will arrive at state j within the 
time t following one of the possible rating trajectories. 

19.6. Semi-Markov credit risk models 

The rating process, generated by the rating agency, gives a reliability rating to a 
firm’s bond. 

 
For example, in Standard and Poor’s case, there are the eight different classes of 

rating which means having the following set of states: 

AAA, AA, A, BBB, BB, B, CCC, DI . 

The first seven states are good states and the last one is the only bad state that is 
also the only absorbing state. The two subsets are the following: 

AAA, AA, A, BBB, BB, B, CCC ,  DU D . 

Solving systems (19.88) and (19.89) we will obtain the following results: 

1) ( )ij t  and ( , )ij s t  represent the probabilities of being in state j starting in 
state i after time t in the homogenous case, or starting at time s in state i in the non-
homogenous one. Both the results take into account the different probabilities of 
changing state during the permanence of the system in the same state (duration 
problem). In the non-homogenous case, the problem of the different probabilities of 
changing state as a function of the different time of evaluation (aging problem) is 
also solved. 

2) ( ) ( )i ij
j U

A t t  and ( , ) ( , )i ij
j U

A s t s t  represent the probability that the 

system never goes in the default state in time t in homogenous case and from time s 
up to the time t in the non-homogenous one.  

3) 1 ( )iH t  and 1 ( , )iH s t  represent the probability that in time t or from 
time s up to the time t, no new rating evaluation was done for the firm. 

 
Before giving another result that can be obtained in an SMP environment, we 

have to introduce the concept of the first transition after time t. More precisely, we 
suppose that the system at time 0 or at time s was in state i, and we know that with 
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probability 1 ( )iH t  or 1 ( , )iH s t  the system does not move from state i. 
According to these hypotheses we would know the probability that the next 
transition will be to state j. This probability will be denoted by ( )ij t  in the 
homogenous case and by ( , )ij s t  in the non-homogenous case. These probabilities 
have the following meaning:  

1 1( ) | ,ij n n n nt P X j X i T T t  (19.92) 

1 1( , ) | , ,ij n n n ns t P X j X i T t T s . (19.93) 

These probabilities can be obtained by means of the following relations: 

( )
( )

1 ( )
ij ij

ij
i

p Q t
t

H t
  (19.94) 

( ) ( , )
( , )

1 ( , )
ij ij

ij
i

p s Q s t
s t

H s t
.  (19.95) 

After definitions (19.92) and (19.93) by means of SMP, it is possible to obtain 
the following results: 

4) ( )ij t  and ( , )ij s t  represent, respectively, the probabilities of obtaining rank 
j at the next rating if the previous state was i and no rating evaluation was done in 
time t in the homogenous case, or from time s up to time t in the non-homogenous 
one. In this way, for example, if the transition to the default state is possible and if 
the system does not move from time s up to time t from state i, we know the 
probability that in the next transition the system will go to the default state. 

 
The downward problem can be solved introducing six other states. The set of the 

states becomes the following: 

AAA, AA,AA-, A,A-, BBB,BBB-, BB,BB-, B,B-, CCC,CCC-, DI  

For example, state BBB is divided into BBB and BBB-. The system will be in 
state BBB if it arrived from a lower rating. On the other hand, it will be in state 
BBB- if it arrived in the state from a better rating (a downward transition). 

 
It is also possible to suppose that if there is a virtual transition, then if the system 

is in the BBB- state it will go to the BBB state, but in our models this assumption 
will not be made. 
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The first 13 states are good states and the last one is the only bad state. 
According to this hypothesis, the two subsets become the following: 

AAA, AA,AA-, A,A-, BBB,BBB-, BB,BB-, B,B-, CCC,CCC- ,

 D

U

D
. 

The homogenous and non-homogenous models do not change. The simple 
introduction of the states makes it possible to solve the downward problem. 

19.7. NHSMP with backward conditioning time 

Now we introduce non-homogenous backward semi-Markov process, that is, a 
generalization of the SMP. We state only the non-homogenous case. To explain the 
backward introduction in Figure 7.1 a trajectory of a SMP with backward recurrence 
time is shown. 

 

Figure 19.1. Backward time conditioning 

With non-homogenous semi-Markov processes we know that at time s the 
system entered into state I, then the probability of being in state j at time t is given 
by ( , )ij s t . Taking into account backward time, we consider that we entered into 
the state i at time u, and we remained in state i up to time s (backward recurrence 
time s-u). The transition probabilities are conditioned to the entrance time into state i 
and to the fact that the system does not have transitions up to time s. So, we 
introduce the new conditional probabilities 

( ) 1 ( ) ( ) ( ) 1( , , ) P | , , , ,i N s N s N s N sH u s t T t J i T u T s t s  

( ) 1 ( ) 1 ( ) ( ) ( ) 1( , , ) P , | , , ,i j N s N s N s N s N sQ u s t T t J j J i T u T s t s  
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It is clear that ( , , ), ( , , )i iH s s t Q s s t  and ( , , )ij s s t  are equal respectively to 
( , ), ( , ) and ( , )i i ijH s t Q s t s t  of the non-homogenous semi-Markov process. 

 
According to this hypothesis, relations (19.71), (19.91), (19.88) and (19.90) are 

rewritten in the following way: 

( , , )
( , , )

1 ( , , )
ij

ij
i

Q u u t
Q u s t

H u u s
  (19.96) 

( , , )
( , , )

1 ( , , )
ij

ij
i

b u u t
b u s t

H u u s
  (19.97) 

1

( , , ) ( , , ) ( , , ) ( , , )
t

ij ij j i
j I s

u s t D u s t t b u s  (19.98) 

where 

1 ( , , )
if

1 ( , , )( , , )

0 if

i

iij

H u u t
i j

H u u sD u s t

i j

 (19.99) 

and ( , , )ij u s t  is the probability of being in state j at time t given that at time s the 
system was in state i and that it entered into this state at time u and has not moved 
from state i up to time s.  
 

With this generalization of the model it is possible to consider the complete time 
of duration into a state in the rating migration model. 

 
The results given in the previous section with backward conditioning recurrence 

time become the following: 

1) ( , , )ij u s t  represents the probability of being in state j at time t being in state 
i at time s and moreover given that the system arrived at state i at time u and that 
from u to s ( )u s  there was no transition. These results take into account the 
different probabilities of changing state during the permanence of the system in the 
same state (duration problem) considering the arrival time in the state and, in a 
complete way, the duration inside a state. Furthermore, it also considers the different 
probabilities of changing state as a function of the different time of evaluation 
(aging problem). The different probability values given for the two states that are 
obtained because of the downward problem solve the third Markovian model 
problem. 
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2) ( , , ) ( , , )i ij
j U

A u s t u s t  represents the probability that the system never 

goes in the default state from time s up to time t.  

3) ( , , )iiD u s t  represents the probability that from time s up to time t no one new 
rating evaluation was done for the firm, taking into account that there were no 
transitions from u to s either. 

 
In this case, ( , )ij s t  does not make sense because the backward gives no more 

information as regards the case without recurrence times. 

19.8. Examples 

In this section, we present examples for the homogenous case and for downward 
and backward non-homogenous models; for a simple non-homogenous case see 
Janssen and Manca (2007). The data were extracted from Standard and Poor’s 
Credit Review (1993), and Standard and Poor’s (2001). 

19.8.1. Homogenous SMP application 

The first example is given using the transition matrix given in Jarrow et al. 
(1997), who presented one the first applications of Markov processes to the problem 
of credit risk. 

 
Real data were not available and this matrix is used only in order to show how 

the model can work and the results that can be obtained by means of a homogenous 
semi-Markov process model. 

 
The matrix was constructed starting from the 1 year transition matrix given in 

Standard and Poor’s Credit Review (1993). The matrix is given in Table 19.6 for the 
sake of completeness. 

 
The d.f. of waiting times are not known and they were constructed by means of 

random number generators. 
 
The results at 5 years and at 10 years of the matrix are reported ( )ij t  

respectively in Tables 19.7 and 19.8.  
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 AAA AA A BBB BB B CCC D 
AAA 0.891 0.0963 0.0078 0.0019 0.003 0 0 0 
AA 0.0086 0.901 0.0747 0.0099 0.0029 0.0029 0 0 
A 0.0009 0.0291 0.8896 0.0649 0.0101 0.0045 0 0.0009 

BBB 0.0006 0.0043 0.0656 0.8428 0.0644 0.016 0.0018 0.0045 
BB 0.0004 0.0022 0.0079 0.0719 0.7765 0.1043 0.0127 0.0241 
B 0 0.0019 0.0031 0.0066 0.0517 0.8247 0.0435 0.0685 

CCC 0 0 0.0116 0.0116 0.0203 0.0754 0.6492 0.2319 
D 0 0 0 0 0 0 0 1 

Table 19.6. 1 year transition matrix 

For example, element 0.03046 in row A and in column BBB represents the 
probability that a firm that at time 0 has a rating A will have rating BBB at time 5. 

 
 AAA AA A BBB BB B CCC D 

AAA 0.94730 0.04462 0.00474 0.00142 0.00185 0.00007 0.00000 0.00001 
AA 0.00437 0.93638 0.04961 0.00616 0.00166 0.00176 0.00002 0.00005 
A 0.00049 0.01130 0.94901 0.03046 0.00516 0.00289 0.00005 0.00065 

BBB 0.00036 0.00232 0.03778 0.91369 0.03290 0.00886 0.00140 0.00268 
BB 0.00027 0.00123 0.00366 0.04166 0.89871 0.03611 0.00472 0.01363 
B 0.00000 0.00102 0.00219 0.00577 0.02916 0.90182 0.01727 0.04277 

CCC 0.00000 0.00004 0.00570 0.00497 0.00718 0.02673 0.86863 0.08675 
D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Table 19.7. Probabilities (5)ij  

 AAA AA A BBB BB B CCC D 
AAA 0.83816 0.13758 0.01566 0.00376 0.00437 0.00038 0.00003 0.00007 
AA 0.01099 0.85822 0.10525 0.01633 0.00460 0.00422 0.00012 0.00029 
A 0.00133 0.03697 0.85606 0.08135 0.01528 0.00688 0.00026 0.00185 

BBB 0.00087 0.00628 0.08211 0.79992 0.07740 0.02256 0.00292 0.00794 
BB 0.00051 0.00300 0.01241 0.08615 0.73333 0.11574 0.01495 0.03391 
B 0.00003 0.00282 0.00533 0.01253 0.06824 0.75073 0.05572 0.10460 

CCC 0.00001 0.00027 0.01325 0.01395 0.02199 0.08238 0.61142 0.25673 
D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 

Table 19.8. Probabilities (10)ij  

In Table 19.9, the ( )iA t  values are reported, the probabilities of not having a 
default in a time t (row index) starting in state i (column) at time 0.  
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 AAA AA A BBB BB B CCC D 
1 1.00000 1.00000 0.99995 0.99946 0.99826 0.98987 0.98989 0.0 

2 1.00000 1.00000 0.99982 0.99902 0.99379 0.98636 0.98264 0.0 

3 1.00000 0.99999 0.99969 0.99848 0.99296 0.98072 0.95688 0.0 

4 0.99999 0.99997 0.99954 0.99825 0.99081 0.97239 0.93484 0.0 

5 0.99999 0.99995 0.99935 0.99732 0.98637 0.95723 0.91325 0.0 

6 0.99998 0.99993 0.99924 0.99633 0.98303 0.95100 0.86029 0.0 

7 0.99998 0.99989 0.99900 0.99560 0.97817 0.93408 0.82584 0.0 

8 0.99997 0.99984 0.99882 0.99444 0.97353 0.91576 0.77271 0.0 

9 0.99995 0.99978 0.99850 0.99327 0.96946 0.90660 0.76244 0.0 

10 0.99993 0.99971 0.99815 0.99206 0.96609 0.89540 0.74327 0.0 

Table 19.9. Probabilities of not having a default 

 AAA AA A BBB BB B CCC D 
1 0.85082 0.92221 0.90662 0.90109 0.92033 0.85765 0.93533 1.0 

2 0.72879 0.85294 0.78671 0.81736 0.82019 0.65152 0.90909 1.0 

3 0.69140 0.77216 0.67244 0.78712 0.79283 0.61430 0.85917 1.0 

4 0.63930 0.65477 0.62791 0.62841 0.72874 0.58226 0.73706 1.0 

5 0.47396 0.50142 0.58289 0.56618 0.68413 0.54727 0.61716 1.0 

6 0.32902 0.37689 0.41751 0.51725 0.60283 0.32242 0.54618 1.0 

7 0.28210 0.32079 0.39316 0.40741 0.47414 0.27700 0.45527 1.0 

8 0.12558 0.24453 0.36959 0.25555 0.33608 0.21594 0.32597 1.0 

9 0.11273 0.15467 0.19339 0.15823 0.16723 0.20158 0.16877 1.0 

10 0.08805 0.02465 0.00905 0.04343 0.02941 0.03959 0.04901 1.0 

Table 19.10. Probability of remaining in the starting state 

As explained before, these results can assume great relevance in the computation 
of interest rates. 

 
In Table 19.10, the probabilities of remaining in the starting state without 

transitions are reported. 
 
In Tables 19.11 and 19.12, the probability ( )ij t  at 5 years and 10 years are 

reported. For example, 0.06644 represents the probability that the next transition of 
a firm that was at time 0 in the state A and that remained in this state up to time 5 
will go to state BBB in the next transition. 
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 AAA AA A BBB BB B CCC D 
AAA 0.85843 0.12677 0.00993 0.00182 0.00305 0.00000 0.00000 0.00000 
AA 0.00949 0.91387 0.06126 0.00951 0.00303 0.00283 0.00000 0.00000 
A 0.00084 0.03299 0.88487 0.06644 0.01045 0.00369 0.00000 0.00073 

BBB 0.00051 0.00417 0.05568 0.85789 0.06149 0.01481 0.00113 0.00432 
BB 0.00024 0.00166 0.00735 0.05012 0.80635 0.10368 0.01260 0.01801 
B 0.00000 0.00194 0.00278 0.00436 0.05011 0.82294 0.05565 0.06223 

CCC 0.00000 0.00000 0.01027 0.01145 0.02199 0.08057 0.63240 0.24333 
D 0.85843 0.12677 0.00993 0.00182 0.00305 0.00000 0.00000 0.00000 

Table 19.11. Probability (5)ij  

 AAA AA A BBB BB B CCC D 
AAA 0.98206 0.00684 0.00766 0.00164 0.00179 0.00000 0.00000 0.00000 
AA 0.03037 0.86667 0.07300 0.01369 0.00639 0.00988 0.00000 0.00000 
A 0.00342 0.14461 0.15548 0.64345 0.01673 0.03479 0.00000 0.00153 

BBB 0.00025 0.00631 0.10388 0.76402 0.09709 0.02065 0.00147 0.00634 
BB 0.00107 0.00242 0.00308 0.06613 0.63752 0.17163 0.04287 0.07528 
B 0.00000 0.00016 0.00765 0.00036 0.09770 0.69738 0.04657 0.15017 

CCC 0.00000 0.00000 0.01742 0.01122 0.03786 0.02115 0.50411 0.40823 
D 0.98206 0.00684 0.00766 0.00164 0.00179 0.00000 0.00000 0.00000 

Table 19.12. Probability (10)ij  

As was mentioned before, by means of this matrix it is possible, for example, to 
know the probability of going into the default state at the next transition. 

 
Finally, Tables 19.13 and 19.14 present the discrete-time distribution functions 

of the first time of default in a time horizon of 10 years. 
 

 1 2 3 4 5 
AAA 0.00000 0.000000 0.000002 0.000005 0.000010 
AA 0.00000 0.000004 0.000014 0.000029 0.000047 
A 0.00005 0.000181 0.000311 0.000462 0.000648 

BBB 0.00054 0.000980 0.001521 0.001749 0.002678 
BB 0.00174 0.006214 0.007042 0.009187 0.013634 
B 0.01013 0.013635 0.019281 0.027613 0.042766 

CCC 0.01011 0.017358 0.043122 0.065157 0.086749 
D 1.00000 1.00000 1.00000 1.00000 0.000010 

Table 19.13. Distribution function from 1 to 5 
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 6 7 8 9 10 

AAA 0.000015 0.000024 0.000033 0.000046 0.000066 

AA 0.000074 0.000112 0.000158 0.000218 0.000290 

A 0.000756 0.001005 0.001180 0.001503 0.001854 

BBB 0.003667 0.004402 0.005563 0.006727 0.007937 

BB 0.016971 0.021832 0.026472 0.030544 0.033914 

B 0.049002 0.065918 0.084239 0.093395 0.104603 

CCC 0.139715 0.174160 0.227294 0.237560 0.256734 

D 1.00000 1.00000 1.00000 1.00000 1.00000 

Table 19.14. Distribution function from 6 to 10 

19.8.2. Non-homogenous downward example 

To solve the downward problem we constructed the non-homogenous embedded 
Markov chain using the transition matrices given in Standard and Poor’s (2001) 
Table 15 as a basis. In these matrices, the state No Rating was present. Each element 

( )ijp s  of the embedded non-homogenous Markov chain should be constructed 
directly from the data. Constructing the MC, all the possible transitions from state i 
to state j starting from year s should be taken into account. Since we do not have the 
raw data, we used the one year transition matrices given in Standard and Poor’s 
publication. 

 
The publication reports a 20-year history (one year transition matrices from 1981 

to 2000). The example works from year 0, corresponding to 1981 to year 19 that 
corresponds to year 2000. The ( )sP  in the semi-Markov environment should give 
the transition probabilities that there are, theoretically, from time s up to . This 
fact means that if there is a transition from i to j at time ,t s t  then 

( ) 0,ijp k s k t . Standard and Poor’s transition matrix was rearranged taking 
into account this property. Furthermore, we rearranged the obtained matrix giving 
the transition probabilities of the downward states starting from the probability 
transitions constructed without the added states. 

 
In the new states, the transition probabilities of remaining in the state or of 

obtaining a better rating are lower than those of the corresponding non-downward 
state.  
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 AAA AA AA- A A- BBB BBB- 
AAA 0.906284 0 0.074012 0 0.016665 0 0.003039 

AA 0.019456 0.890148 0 0 0.068095 0 0.004009 

AA- 0.016895 0 0.851902 0 0.085766 0 0.016418 

A 0.006028 0.04704 0 0.87366 0 0 0.06546 

A- 0.00435 0.040023 0 0 0.818887 0 0.102706 

BBB 0.00324 0.006481 0 0.04782 0 0.886292 0 

BBB- 0.002331 0.005244 0 0.03467 0 0 0.847431 

BB 0 0.005712 0 0.008785 0 0.044019 0 

BB- 0 0.005106 0 0.0077 0 0.035284 0 

B 0 0.001342 0 0.011884 0 0.006518 0 

B- 0 0.001242 0 0.009932 0 0.004489 0 

CCC 0.012308 0 0 0.010443 0 0.011375 0 

CCC- 0.00027 0 0 0.007712 0 0.007495 0 

D 0 0 0 0 0 0 0 

Table 19.15. Embedded MC at time 0 - I 

 BB BB- B B- CCC CCC- D 
AAA 0 0 0 0 0 0 0 

AA 0 0.008809 0 0.007235 0 0.002249 0 

AA- 0 0.009641 0 0.013364 0 0.006014 0 

A 0 0.00208 0 0.00168 0 0 0.004052 

A- 0 0.005128 0 0.003674 0 0 0.025232 

BBB 0 0.04782 0 0.003044 0 0.002258 0.003044 

BBB- 0 0.089055 0 0.004953 0 0.007478 0.008838 

BB 0.598413 0 0 0.294862 0 0.004392 0.043817 

BB- 0 0.566994 0 0.316054 0 0.019595 0.049267 

B 0.047345 0 0.875595 0 0 0.023673 0.033643 

B- 0.042402 0 0 0.846713 0 0.056063 0.03916 

CCC 0.011096 0 0.084755 0 0.847646 0 0.022378 

CCC- 0.010123 0 0.064831 0 0 0.707889 0.20168 

D 0 0 0 0 0 0 1 

Table 19.16. Embedded MC at time 0 - II 

The probabilities of obtaining a lower rating are higher compared to that of the 
original state. 

 
In Tables 19.15, 19.16, 19.17 and 19.18, two years of the non-homogenous 

embedded MC are reported. 
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 AAA AA AA- A A- BBB BBB- 
AAA 0.899545 0 0.095701 0 0.004754 0 0 
AA 0 0.918598 0 0 0.081402 0 0 
AA- 0 0 0.87046 0 0.12954 0 0 

A 0.00172 0.005059 0 0.919263 0 0 0.070619 
A- 0.001502 0.004106 0 0 0.872126 0 0.100619 

BBB 0 0.008356 0 0.052747 0 0.858366 0 
BBB- 0 0.007356 0 0.043275 0 0 0.815366 
BB 0 0 0 0 0 0.080374 0 
BB- 0 0 0 0 0 0.072374 0 
B 0 0.003848 0 0 0 0.003848 0 
B- 0 0.003102 0 0 0 0.003483 0 

CCC 0 0 0 0 0 0.018525 0 
CCC- 0 0 0 0 0 0.014452 0 

D 0 0 0 0 0 0 0 

Table 19.17. Embedded M.C. at time 10 - I 

 BB BB- B B- CCC CCC- D 
AAA 0 0 0 0 0 0 0 
AA 0 0 0 0 0 0 0 
AA- 0 0 0 0 0 0 0 

A 0 0.003339 0 0 0 0 0 
A- 0 0.021647 0 0 0 0 0 

BBB 0 0.061103 0 0.008356 0 0.005536 0.005536 
BBB- 0 0.101103 0 0.010356 0 0.006536 0.016008 
BB 0.799118 0 0 0.075855 0 0.017861 0.026791 
BB- 0 0.754912 0 0.104586 0 0.027861 0.040267 
B 0.061352 0 0.747004 0 0 0.034524 0.149423 
B- 0.052135 0 0 0.7002 0 0.124524 0.116555 

CCC 0.03705 0 0.074099 0 0.518468 0 0.351858 
CCC- 0.034205 0 0.06741 0 0 0.483847 0.400086 

D 0 0 0 0 0 0 1 

Table 19.18. Embedded M.C. at time 10 - II  

To apply the model, it is also necessary to construct the d.f. of the waiting time 
in each state i, given that the state successively occupied is known. We do not have 
data and we constructed them by means of random number generators. 

 
In Tables 19.19 and 19.20, the probabilities 1 ( , )iH s t  of remaining in the 

state from s to t without any transition are given. 
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Probabilities of no transition from year s to year t 

years AAA AA AA- A A- BBB BBB- 
0 1 0.872181 0.803709 0.86605 0.884755 0.859781 0.950899 0.925139 

0 2 0.77428 0.740025 0.84935 0.81325 0.807756 0.92007 0.774197 

0 3 0.699214 0.719164 0.68683 0.662296 0.792684 0.840488 0.721149 

0 4 0.579474 0.607234 0.604108 0.562696 0.748248 0.677993 0.712246 

0 5 0.496353 0.431912 0.44989 0.503661 0.676747 0.644425 0.652798 

0 6 0.375035 0.370249 0.33209 0.466088 0.624805 0.594064 0.477243 

0 7 0.302027 0.324532 0.266083 0.338748 0.505539 0.411709 0.314356 

0 8 0.206926 0.270204 0.179743 0.223977 0.354685 0.229692 0.292188 

0 9 0.12002 0.204777 0.139748 0.116117 0.17136 0.115246 0.121753 

0 10 0.048179 0.031125 0.056915 0.081423 0.036674 0.083032 0.07514 

6 7 0.814415 0.783328 0.899957 0.795045 0.764473 0.731597 0.814112 

6 8 0.514639 0.456258 0.78702 0.638951 0.570292 0.4426 0.573669 

6 9 0.312577 0.307947 0.187436 0.245597 0.266901 0.299585 0.281691 

6 10 0.042352 0.026528 0.085198 0.058273 0.037473 0.011313 0.04723 

Table 19.19. Probabilities 1 ( , )H s ti   

Probabilities of no transition from year s to year t 
years BB BB- B B- CCC CCC- 

0 1 0.985533 0.894593 0.83837 0.914242 0.883844 0.955493 
0 2 0.947469 0.848314 0.693836 0.743081 0.725237 0.840868 
0 3 0.858208 0.729037 0.618079 0.713725 0.682691 0.684999 
0 4 0.701267 0.636971 0.575733 0.681344 0.578327 0.56305 
0 5 0.577156 0.585617 0.537296 0.660163 0.502152 0.521922 
0 6 0.463875 0.471031 0.401942 0.492227 0.480255 0.439965 
0 7 0.359584 0.351512 0.302279 0.454226 0.344989 0.288244 
0 8 0.242471 0.212772 0.241288 0.292127 0.193908 0.219999 
0 9 0.136879 0.152736 0.185382 0.114899 0.14218 0.108098 
0 10 0.064375 0.043551 0.011903 0.084761 0.043851 0.088229 
6 7 0.644256 0.61234 0.682245 0.778307 0.692634 0.662672 
6 8 0.539284 0.505809 0.639596 0.460034 0.38039 0.473847 
6 9 0.265781 0.178203 0.260959 0.188567 0.158466 0.315536 
6 10 0.055535 0.078714 0.04885 0.072713 0.083376 0.021339 

Table 19.20. Probabilities 1 ( , )H s ti   

In Tables 19.21, 19.22, 19.23 and 19.24 the probabilities ( , )ij s t  are reported. 
These values give the probability that the next transition from the state i will be to 
the state j given that there was no transition from the time s to the time t. 
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For example, element 0.014583 gives the probability that next transition from 
rating AA- will be to rating AAA given that from time 0 up to time 4 there will be 
no real or virtual transitions.  

 
 AAA AA AA- A A- BBB BBB- 

AAA 0.899421 0 0.080348 0 0.017233 0 0.002998 

AA 0.019706 0.879427 0 0 0.078952 0 0.003367 

AA- 0.014583 0 0.837132 0 0.099825 0 0.01853 

A 0.008036 0.060021 0 0.833406 0 0 0.088538 

A- 0.0039 0.033986 0 0 0.839978 0 0.093764 

BBB 0.002525 0.005556 0 0.045356 0 0.886689 0 

BBB- 0.002212 0.004901 0 0.030534 0 0 0.865008 

BB 0 0.00567 0 0.010089 0 0.028391 0 

BB- 0 0.003461 0 0.007602 0 0.026574 0 

B 0 0.000756 0 0.011137 0 0.007193 0 

B- 0 0.001141 0 0.01029 0 0.003632 0 

CCC 0.010151 0 0 0.00688 0 0.01011 0 

CCC- 0.000246 0 0 0.00715 0 0.006269 0 

D 0 0 0 0 0 0 0 

Table 19.21. Probabilities of remaining in state i from years 0 to 4 and after to go in j-I  

 BB BB- B B- CCC CCC- D 

AAA 0 0 0 0 0 0 0 

AA 0 0.00794 0 0.008128 0 0.00248 0 

AA- 0 0.010174 0 0.015311 0 0.004445 0 

A 0 0.002865 0 0.001739 0 0 0.005395 

A- 0 0.004857 0 0.002694 0 0 0.020821 

BBB 0 0.051625 0 0.003346 0 0.001876 0.003027 

BBB- 0 0.07824 0 0.004769 0 0.006562 0.007773 

BB 0.677291 0 0 0.232917 0 0.004475 0.041167 

BB- 0 0.587472 0 0.309078 0 0.019533 0.04628 

B 0.047536 0 0.87162 0 0 0.025383 0.036375 

B- 0.028513 0 0 0.863333 0 0.049553 0.043538 

CCC 0.009922 0 0.079238 0 0.86236 0 0.021339 

CCC- 0.009463 0 0.083273 0 0 0.671109 0.22249 

D 0 0 0 0 0 0 1 

Table 19.22. Probabilities of remaining in state i from years 0 to 4 and after to go in j-II  
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 AAA AA AA- A A- BBB BBB- 

AAA 0.904587 0 0.086438 0 0.005801 0 0.003173 

AA 0.003638 0.935816 0 0 0.026268 0 0.008966 

AA- 0.001835 0 0.875386 0 0.059341 0 0.030207 

A 0.006464 0.044629 0 0.909804 0 0 0.030872 

A- 0.004883 0.053664 0 0 0.852282 0 0.074755 

BBB 0.002969 0.007921 0 0.066346 0 0.855137 0 

BBB- 0.002141 0.005289 0 0.019131 0 0 0.814275 

BB 0 0.005274 0 0.007533 0 0.029585 0 

BB- 0 0.003526 0 0.010214 0 0.018422 0 

B 0 0.001895 0 0.007703 0 0.005509 0 

B- 0 0.000877 0 0.005706 0 0.00593 0 

CCC 0.023288 0 0 0.021232 0 0.018959 0 

CCC- 0.0005 0 0 0.007729 0 0.007913 0 

D 0 0 0 0 0 0 0 

Table 19.23. Probabilities of remaining in state i from years 2 to 7 and after to go in j-I 

 BB BB- B B- CCC CCC- D 

AAA 0 0 0 0 0 0 0 

AA 0 0.015499 0 0.008795 0 0.001018 0 

AA- 0 0.007653 0 0.016357 0 0.009222 0 

A 0 0.004798 0 0.001643 0 0 0.00179 

A- 0 0.009357 0 0.003793 0 0 0.001266 

BBB 0 0.055705 0 0.007023 0 0.001336 0.003563 

BBB- 0 0.093151 0 0.049235 0 0.011567 0.005211 

BB 0.804949 0 0 0.123423 0 0.012818 0.016418 

BB- 0 0.789015 0 0.145932 0 0.011718 0.021173 

B 0.029954 0 0.892309 0 0 0.007011 0.05562 

B- 0.028292 0 0 0.872399 0 0.048835 0.03796 

CCC 0.013332 0 0.173902 0 0.56689 0 0.182397 

CCC- 0.016184 0 0.169612 0 0 0.741203 0.056858 

D 0 0 0 0 0 0 1 

Table 19.24. Probabilities of remaining in state i from years 2 to 7 and after to go in j-II 
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Tables 19.25, 19.26, 19.27 and 19.28 report ( , )ij s t  (the element of the 
evolution equation matrix). 

 
 AAA AA AA- A A- BBB BBB- 

AAA 0.973331 3.23E-05 0.019182 1.87E-06 0.006311 2.30E-08 0.001037 

AA 0.005264 0.964317 7.93E-05 8.58E-06 0.02358 6.34E-06 0.001527 

AA- 0.005071 0.000101 0.962186 2.13E-05 0.01918 9.75E-06 0.004675 

A 0.000823 0.014209 1.02E-05 0.976499 6.96E-05 7.74E-07 0.006184 

A- 0.00111 0.009958 1.95E-05 5.49E-05 0.95434 2.97E-06 0.023357 

BBB 0.000997 0.002635 1.08E-05 0.014953 3.16E-05 0.968121 6.51E-05 

BBB- 0.000774 0.001457 1.13E-05 0.009248 1.43E-05 4.19E-05 0.946116 

BB 6.72E-06 0.001589 1.39E-08 0.001036 1.66E-05 0.018562 6.41E-06 

BB- 7.57E-06 0.002329 3.96E-08 0.002624 1.84E-05 0.012877 1.75E-05 

B 4.30E-06 0.000761 4.08E-08 0.003514 4.35E-06 0.002204 2.02E-05 

B- 4.39E-06 0.000435 3.27E-08 0.002285 5.53E-06 0.001897 1.72E-05 

CCC 0.004433 3.51E-05 4.9E-05 0.004916 3.86E-06 0.005539 2.86E-05 

CCC- 0.000115 2.04E-05 1.24E-06 0.00339 2.59E-07 0.002993 1.85E-05 

D 0 0 0 0 0 0 0 

Table 19.25. Probabilities of being in j at time 3 given that at time 0 was in i-I 

 BB BB- B B- CCC CCC- D 

AAA 8.87E-08 3.78E-05 1.10E-08 4.01E-05 0 7.71E-06 1.91E-05 

AA 9.85E-06 0.003022 4.00E-06 0.001399 0 0.00074 4.21E-05 

AA- 1.1E-05 0.003049 2.19E-05 0.002839 0 0.002671 0.000164 

A 3.58E-06 0.000493 4.60E-08 0.000766 0 1.33E-05 0.000929 

A- 6.41E-06 0.001648 1.10E-07 0.00124 0 2.64E-05 0.008237 

BBB 2.36E-06 0.010917 6.47E-06 0.00062 0 0.000719 0.00092 

BBB- 8.89E-06 0.034942 1.9E-05 0.002013 0 0.002519 0.002836 

BB 0.888772 0.000174 3.50E-06 0.07717 0 0.000701 0.011961 

BB- 0.000454 0.853982 2.88E-05 0.106066 0 0.007009 0.014587 

B 0.015196 1.5E-05 0.961312 7.42E-05 0 0.006078 0.010816 

B- 0.021377 1.74E-05 0.000144 0.951864 0 0.015383 0.00657 

CCC 0.003701 4.63E-05 0.039577 2.31E-05 0.924516 0.000114 0.017018 

CCC- 0.00324 2.86E-05 0.016846 1.08E-05 0 0.902156 0.071179 

D 0 0 0 0 0 0 1 

Table 19.26. Probabilities of being in j at time 3 given that at time 0 was in i-II 
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 AAA AA AA- A A- BBB BBB- 
AAA 0.720751 0.000567 0.219784 0.000791 0.041623 0.00018 0.010661 
AA 0.024902 0.817118 0.001019 0.00115 0.114982 0.00059 0.017173 
AA- 0.021196 0.003109 0.724453 0.001831 0.168534 0.001272 0.030429 

A 0.00389 0.040986 0.00013 0.820117 0.003373 0.001402 0.091656 
A- 0.004086 0.039947 0.000146 0.008838 0.719879 0.002352 0.147647 

BBB 0.004809 0.024665 0.000241 0.171344 0.00158 0.606366 0.012126 
BBB- 0.003751 0.011209 0.000154 0.148196 0.000727 0.011129 0.540028 
BB 0.000229 0.003772 7.32E-06 0.029637 0.000174 0.158403 0.001726 
BB- 0.000156 0.003413 4.02E-06 0.021329 0.000162 0.107219 0.001524 
B 0.000107 0.008409 2.46E-06 0.019755 0.000388 0.022386 0.001531 
B- 0.000156 0.004512 3.57E-06 0.017595 0.000365 0.020248 0.001568 

CCC 0.013874 0.002387 0.000357 0.023905 0.000151 0.028082 0.001715 
CCC- 0.000702 0.002271 2.23E-05 0.019848 9.75E-05 0.022471 0.001308 

D 0 0 0 0 0 0 0 

Table 19.27. Probabilities of being in j at time 10 given that at time 3 was in i-I 

 BB BB- B B- CCC CCC- D 
AAA 0.000752 0.002525 1.92E-05 0.001931 0 0.000526 0.000567 
AA 0.000605 0.006092 0.000229 0.010242 0 0.002915 0.002983 
AA- 0.001153 0.01247 0.00063 0.021024 0 0.007958 0.005942 

A 0.00039 0.022088 4.57E-05 0.010469 0 0.002099 0.003356 
A- 0.000883 0.037623 9.19E-05 0.023517 0 0.00391 0.011079 

BBB 0.001973 0.091162 0.000496 0.0492 0 0.013299 0.02274 
BBB- 0.005375 0.114259 0.001431 0.092938 0 0.027454 0.043349 
BB 0.566792 0.008926 0.002051 0.136216 0 0.038457 0.05361 
BB- 0.008583 0.535043 0.002757 0.188448 0 0.054521 0.076843 
B 0.079673 0.001372 0.681411 0.009225 0 0.051393 0.124346 
B- 0.064503 0.001347 0.005869 0.635897 0 0.092434 0.155501 

CCC 0.035086 0.001532 0.21134 0.003613 0.341717 0.012572 0.323669 
CCC- 0.034429 0.001224 0.183819 0.00365 0 0.386965 0.343194 

D 0 0 0 0 0 0 1 

Table 19.28. Probabilities of being in j at time 10 given that at time 3 was in i-II 

For example, 0.000493 represents the probability of being in state BB- at time 3 
given that the rating evaluation was A at time 0. 

 
Finally, in Tables 19.29 and 19.30 the ( , )iA s t  probabilities are reported. These 

elements give the probability that a firm, that is, at a given rating at time s, will not 
have a default up to the time t. 
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( , )iA s t  

years AAA AA AA- A A- BBB BBB- 
0 1 1 1 1 0.999968 0.996925 0.999764 0.998961 
0 2 0.999991 0.999987 0.999936 0.999423 0.993572 0.999435 0.998299 
0 3 0.999981 0.999958 0.999836 0.999071 0.991763 0.99908 0.997164 
0 4 0.999968 0.999911 0.999709 0.998793 0.988904 0.998726 0.995916 
0 5 0.999956 0.999812 0.999476 0.998475 0.985322 0.998057 0.99488 
0 6 0.999933 0.999633 0.999143 0.997611 0.982541 0.997147 0.992688 
0 7 0.999894 0.999401 0.998674 0.996742 0.979183 0.99623 0.990739 
0 8 0.999835 0.998948 0.997753 0.995935 0.976017 0.994732 0.986505 
0 9 0.999749 0.998206 0.996333 0.994831 0.973398 0.992288 0.982006 
0 10 0.999314 0.995626 0.991587 0.990844 0.964015 0.981222 0.957506 
6 7 1 1 1 1 1 0.998896 0.995888 
6 8 0.999993 0.999954 0.999886 0.99988 0.999831 0.997163 0.994382 
6 9 0.999983 0.999888 0.999719 0.999635 0.999343 0.993383 0.991843 
6 10 0.999846 0.999329 0.998343 0.997602 0.99556 0.981921 0.9661 

Table 19.29. Probability of not going into default from years s to t  

( , )iA s t  

years BB BB- B B- CCC CCC- D 
0 1 0.996257 0.994695 0.996146 0.999959 0.996284 0.972282 0 
0 2 0.992331 0.991607 0.993892 0.996661 0.991224 0.953744 0 
0 3 0.988039 0.985413 0.989184 0.99343 0.982982 0.928821 0 
0 4 0.984554 0.977635 0.983544 0.986963 0.976653 0.917664 0 
0 5 0.976896 0.969593 0.976542 0.976842 0.96483 0.878435 0 
0 6 0.966982 0.959714 0.969033 0.968583 0.950608 0.84797 0 
0 7 0.959384 0.955638 0.95667 0.958528 0.937731 0.819395 0 
0 8 0.950314 0.939394 0.947369 0.947336 0.918583 0.775739 0 
0 9 0.938124 0.92374 0.929473 0.917325 0.819802 0.724016 0 
0 10 0.897052 0.873723 0.876134 0.844328 0.700216 0.581562 0 
6 7 0.99906 0.996682 0.987736 0.998923 0.960108 0.972323 0 
6 8 0.996519 0.987823 0.977231 0.990127 0.917491 0.86902 0 
6 9 0.989132 0.970269 0.960058 0.93397 0.798357 0.819678 0 
6 10 0.961048 0.917886 0.892609 0.861352 0.640223 0.670431 0 

Table 19.30. Probability not going into default from years s to t  

19.8.3. Non-homogenous downward backward example 

In this example, we use the same inputs as in the previous section and thus we 
will only report the results connected with the backward case. 

 
In Tables 19.31 and 19.32, the probabilities ( , , )iiD u s t  of remaining in the state 

from s to t without any transition given that the system arrived at time u in state i and 
remained in this state from u to s are reported (backward recurrence time s-u). 
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Probabilities of no transition 
u s t AAA AA AA- A A- BBB BBB- 
0 0 1 0.872181 0.803709 0.86605 0.884755 0.859781 0.950899 0.925139 
0 0 2 0.77428 0.740025 0.84935 0.81325 0.807756 0.92007 0.774197 
0 0 3 0.699214 0.719164 0.68683 0.662296 0.792684 0.840488 0.721149 
0 0 4 0.579474 0.607234 0.604108 0.562696 0.748248 0.677993 0.712246 
0 0 5 0.496353 0.431912 0.44989 0.503661 0.676747 0.644425 0.652798 
0 0 6 0.375035 0.370249 0.33209 0.466088 0.624805 0.594064 0.477243 
0 0 7 0.302027 0.324532 0.266083 0.338748 0.505539 0.411709 0.314356 
0 0 8 0.206926 0.270204 0.179743 0.223977 0.354685 0.229692 0.292188 
0 0 9 0.12002 0.204777 0.139748 0.116117 0.17136 0.115246 0.121753 
0 0 10 0.048179 0.031125 0.056915 0.081423 0.036674 0.083032 0.07514 
2 6 7 0.89922 0.813412 0.754061 0.806292 0.768666 0.805227 0.665298 
2 6 8 0.746307 0.542539 0.450393 0.56255 0.434755 0.682026 0.560027 
2 6 9 0.216419 0.44434 0.315451 0.281127 0.208424 0.585145 0.328494 
2 6 10 0.179681 0.022597 0.047193 0.049291 0.08731 0.02137 0.077891 
4 6 7 0.917817 0.770902 0.939876 0.677056 0.604429 0.729913 0.823655 
4 6 8 0.619728 0.552357 0.603088 0.386159 0.388559 0.620946 0.55475 
4 6 9 0.285654 0.343981 0.476964 0.26715 0.251663 0.557772 0.283716 
4 6 10 0.063009 0.042074 0.042642 0.129126 0.140237 0.041711 0.196981 

Table 19.31. Probabilities ( , , )iiD u s t - I 

Probabilities of no transition 
u s t BB BB- B B- CCC CCC- 
0 0 1 0.985533 0.894593 0.83837 0.914242 0.883844 0.955493 
0 0 2 0.947469 0.848314 0.693836 0.743081 0.725237 0.840868 
0 0 3 0.858208 0.729037 0.618079 0.713725 0.682691 0.684999 
0 0 4 0.701267 0.636971 0.575733 0.681344 0.578327 0.56305 
0 0 5 0.577156 0.585617 0.537296 0.660163 0.502152 0.521922 
0 0 6 0.463875 0.471031 0.401942 0.492227 0.480255 0.439965 
0 0 7 0.359584 0.351512 0.302279 0.454226 0.344989 0.288244 
0 0 8 0.242471 0.212772 0.241288 0.292127 0.193908 0.219999 
0 0 9 0.136879 0.152736 0.185382 0.114899 0.14218 0.108098 
0 0 10 0.064375 0.043551 0.011903 0.084761 0.043851 0.088229 
2 6 7 0.729997 0.925012 0.937741 0.920945 0.925065 0.716396 
2 6 8 0.396545 0.695417 0.558071 0.832468 0.672505 0.553408 
2 6 9 0.221682 0.459819 0.262421 0.396267 0.342161 0.283633 
2 6 10 0.129046 0.123599 0.110453 0.036925 0.02891 0.051503 
4 6 7 0.831486 0.872701 0.785129 0.91658 0.664807 0.865949 
4 6 8 0.68755 0.552467 0.501403 0.567741 0.428559 0.583168 
4 6 9 0.469288 0.303929 0.426686 0.248322 0.295415 0.321166 
4 6 10 0.040333 0.029382 0.049693 0.201695 0.163986 0.150543 

Table 19.32. Probabilities ( , , )iiD u s t - II 
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 AAA AA AA- A A- BBB BBB- 
AAA 0.87914 7.43E-05 0.109719 7.32E-05 0.006752 5.27E-06 0.003312 
AA 0.006296 0.934405 5E-05 0.000182 0.02957 0.000291 0.008368 
AA- 0.004272 0.000385 0.909481 0.00054 0.045075 0.000118 0.023819 

A 0.002963 0.041231 6.75E-05 0.912063 0.000969 0.000102 0.030523 
A- 0.004478 0.035515 7.56E-05 0.00142 0.871933 0.000163 0.063676 

BBB 0.002678 0.00514 5.46E-05 0.058214 0.000107 0.85594 0.001179 
BBB- 0.001799 0.003705 3.45E-05 0.024706 0.0001 0.001665 0.826728 
BB 6.51E-05 0.003005 3.21E-07 0.011852 8E-05 0.041455 0.000366 
BB- 4.31E-05 0.003697 2.71E-07 0.004487 8.75E-05 0.024516 0.000136 
B 2.56E-05 0.002082 1.07E-07 0.00639 3.82E-05 0.006298 0.000109 
B- 3.35E-05 0.002076 1.67E-07 0.005122 5.98E-05 0.004665 9.97E-05 

CCC 0.012057 0.000273 0.000163 0.014286 2.06E-05 0.010276 0.000285 
CCC- 0.000297 0.000207 3.61E-06 0.010776 3.04E-06 0.01226 0.000238 

D 0 0 0 0 0 0 0 

Table 19.33. Probabilities (2,4,8)ij - I 

 BB BB- B B- CCC CCC- D 
AAA 5.57E-07 0.000554 2.00E-07 0.000324 0 1.67E-05 2.95E-05 
AA 6.04E-05 0.01208 7.3E-05 0.00659 0 0.00156 0.000475 
AA- 4.05E-05 0.005448 0.000129 0.005271 0 0.004953 0.000469 

A 1.8E-05 0.006937 4.60E-06 0.003268 0 0.000261 0.001594 
A- 4.17E-05 0.010847 1.07E-05 0.008864 0 0.000479 0.002497 

BBB 9.45E-05 0.05323 0.000153 0.01481 0 0.004568 0.003831 
BBB- 0.000542 0.06678 0.000358 0.055484 0 0.010978 0.00712 
BB 0.807165 0.000809 0.000606 0.102833 0 0.020182 0.011582 
BB- 0.000537 0.816197 0.000448 0.111314 0 0.017023 0.021514 
B 0.029385 0.000196 0.891416 0.000712 0 0.017088 0.046261 
B- 0.013616 0.000117 0.00294 0.83323 0 0.065388 0.072652 

CCC 0.013842 0.000186 0.10049 0.000363 0.723444 0.003141 0.121172 
CCC- 0.013936 0.000276 0.09612 0.000494 0 0.75511 0.110281 

D 0 0 0 0 0 0 1 

Table 19.34. Probabilities (2,4,8)ij - II 

In Tables 19.33, 19.34, 19.35 and 19.36, some of the evolution equation sub-
matrices of the ( , , )ij u s t  are reported. 

 
For example, 0.006937 represents the probability of being in state BB- at time 8 

given that the rating evaluation was A at time 4 and the system entered into this state 
at time 2 (backward recurrence time 4-2). 
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 AAA AA AA- A A- BBB BBB- 

AAA 0.893323 0.000122 0.08903 9.24E-05 0.013534 4.33E-06 0.003405 

AA 0.006692 0.886695 0.000113 0.000456 0.074917 0.00097 0.008796 

AA- 0.004456 0.001082 0.821541 0.001036 0.105953 0.000486 0.031362 

A 0.007464 0.043065 0.000116 0.858171 0.003494 0.000777 0.06479 

A- 0.004565 0.051651 0.000171 0.002344 0.771791 0.001026 0.132614 

BBB 0.002391 0.013464 9.49E-05 0.057016 0.00083 0.854738 0.003984 

BBB- 0.002063 0.009745 5.01E-05 0.048088 0.000341 0.004701 0.70638 

BB 3.04E-05 0.005834 1.25E-07 0.008943 0.000311 0.049101 0.000341 

BB- 3.76E-05 0.003823 2.20E-07 0.014951 0.000228 0.059871 0.000431 

B 2.56E-05 0.004185 1.90E-07 0.007884 0.00018 0.010822 0.000403 

B- 2.74E-05 0.00255 1.73E-07 0.006393 5.64E-05 0.010861 0.000339 

CCC 0.026797 0.00159 0.000761 0.026286 0.000126 0.023591 0.001191 

CCC- 0.000717 0.001173 1.76E-05 0.012282 2.26E-05 0.013133 0.000242 

D 0 0 0 0 0 0 0 

Table 19.35. Probabilities (5,7,10)ij - I 

 BB BB- B B- CCC CCC- D 

AAA 2.15E-07 0.00033 5.33E-08 8.77E-05 0 1.81E-05 5.31E-05 

AA 0.000278 0.008518 1.39E-05 0.009602 0 0.001855 0.001094 

AA- 0.000531 0.009151 0.000274 0.013886 0 0.005551 0.004692 

A 4.03E-05 0.01449 3.74E-06 0.004256 0 0.000759 0.002575 

A- 0.000128 0.021767 7.39E-06 0.009632 0 0.001292 0.003012 

BBB 0.000347 0.046795 6.12E-05 0.010801 0 0.003264 0.006214 

BBB- 0.000414 0.123791 0.000338 0.063061 0 0.014662 0.026367 

BB 0.74951 0.001672 0.000397 0.126385 0 0.021406 0.03607 

BB- 0.006158 0.636701 0.000714 0.183819 0 0.041211 0.052055 

B 0.048595 0.000295 0.808251 0.003852 0 0.029791 0.085716 

B- 0.055889 0.000264 0.001062 0.734109 0 0.09917 0.089279 

CCC 0.019177 0.000997 0.164981 0.001588 0.43202 0.005078 0.295819 

CCC- 0.029484 0.00043 0.161747 0.001591 0 0.536183 0.242977 

D 0 0 0 0 0 0 1 

Table 19.36. Probabilities (5,7,10)ij - II  
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( , )iA s t  

u s t AAA AA AA- A A- BBB BBB- 

0 0 1 1 1 1 0.999968 0.996925 0.999764 0.998961 

0 0 2 0.999991 0.999987 0.999936 0.999423 0.993572 0.999435 0.998299 

0 0 3 0.999981 0.999958 0.999836 0.999071 0.991763 0.99908 0.997164 

0 0 4 0.999968 0.999911 0.999709 0.998793 0.988904 0.998726 0.995916 

0 0 5 0.999956 0.999812 0.999476 0.998475 0.985322 0.998057 0.99488 

0 0 6 0.999933 0.999633 0.999143 0.997611 0.982541 0.997147 0.992688 

0 0 7 0.999894 0.999401 0.998674 0.996742 0.979183 0.99623 0.990739 

0 0 8 0.999835 0.998948 0.997753 0.995935 0.976017 0.994732 0.986505 

0 0 9 0.999749 0.998206 0.996333 0.994831 0.973398 0.992288 0.982006 

0 0 10 0.999314 0.995626 0.991587 0.990844 0.964015 0.981222 0.957506 

2 6 7 1 1 1 0.999717 0.99652 0.998982 0.999799 

2 6 8 0.999993 0.999909 0.999681 0.998935 0.991975 0.997865 0.995446 

2 6 9 0.999986 0.999532 0.998959 0.998718 0.989737 0.995587 0.990746 

2 6 10 0.999891 0.997734 0.995524 0.996719 0.984762 0.985371 0.969673 

4 6 7 1 1 1 0.999957 0.999766 0.999656 0.998659 

4 6 8 0.999996 0.999844 0.999806 0.99937 0.999451 0.998292 0.995586 

4 6 9 0.99999 0.999614 0.998885 0.998971 0.999054 0.996909 0.991069 

4 6 10 0.999889 0.998192 0.994393 0.997174 0.996021 0.99036 0.966736 

Table 19.37. Probability of not defaulting from s to t with backward recurrence time s-u-I 

Finally, in Tables 19.37 and 19.38 the probabilities of never going into default 
are reported. These elements give the probability that a firm, that is, at a given rating 
at time s, will not have a default up to time t, given that it had the rating at time u 
(backward recurrence time s-u). 
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( , )iA s t  

u s t BB BB- B B- CCC CCC- 

0 0 1 0.996257 0.994695 0.996146 0.999959 0.996284 0.972282 

0 0 2 0.992331 0.991607 0.993892 0.996661 0.991224 0.953744 

0 0 3 0.988039 0.985413 0.989184 0.99343 0.982982 0.928821 

0 0 4 0.984554 0.977635 0.983544 0.986963 0.976653 0.917664 

0 0 5 0.976896 0.969593 0.976542 0.976842 0.96483 0.878435 

0 0 6 0.966982 0.959714 0.969033 0.968583 0.950608 0.84797 

0 0 7 0.959384 0.955638 0.95667 0.958528 0.937731 0.819395 

0 0 8 0.950314 0.939394 0.947369 0.947336 0.918583 0.775739 

0 0 9 0.938124 0.92374 0.929473 0.917325 0.819802 0.724016 

0 0 10 0.897052 0.873723 0.876134 0.844328 0.700216 0.581562 

2 6 7 0.998572 0.978718 0.969794 0.977368 0.987032 0.979671 

2 6 8 0.996016 0.970403 0.954563 0.96299 0.97334 0.95212 

2 6 9 0.99033 0.962454 0.940606 0.946127 0.880292 0.891065 

2 6 10 0.956603 0.928904 0.89047 0.86583 0.756136 0.732838 

4 6 7 0.999171 0.998713 0.992329 0.984648 0.99576 0.963201 

4 6 8 0.992429 0.986815 0.980369 0.971697 0.955405 0.942493 

4 6 9 0.986339 0.980006 0.956142 0.947635 0.820178 0.88657 

4 6 10 0.958009 0.942448 0.905999 0.888396 0.684876 0.725764 

Table 19.38. Probability of not defaulting from s to t with backward recurrence time s-u-II 


